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Diffusion as a mixing mechanism in granular materials
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We present several numerical results on granular mixtures. In particular, we examine the efficiency of
diffusion as a mixing mechanism in these systems. The collisions are inelastic and to compensate the energy
loss, we thermalize the grains by adding a random force. Starting with a segregated system, we show that
uniform agitation~heating! leads to a uniform mixture of grains of different sizes. We define a characteristic
mixing timetmix , and study theoretically and numerically its dependence on other parameters like the density.
We examine a model for bidisperse systems for which we can calculate some physical quantities. We also
examine the effect of a temperature gradient and demonstrate the appearance of an expected segregation.
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I. INTRODUCTION

Granular media are notoriously difficult to mix. For a v
riety of reasons and under rather general conditions, t
tend to form segregated steady states@1#. For example, seg
regation can occur during granular flow, the bigger partic
moving farther than the smaller ones. Difference of s
~polydispersity of the grains! or difference of material~dif-
ferent kinds of grains! produce different geometrical o
physical properties. Segregation can also be due to perc
tion @2# where the small grains fall through the holes b
tween the big grains leaving only the bigger particles behi
Shear@3–5# and vibration can also produce segregation. O
of the best known examples of vibration segregation is p
haps the ‘‘Brazil nut effect.’’ In this case, the geometric
properties@6–8# are responsible for the upward movement
big particles although convection processes near the bo
aries can also be very important@9#. All these processes
~flow, shearing, and convection! are very common in indus
trial applications such as in mixers@10,11#. For these reason
such mixers are efficient only for rather homogeneous m
rials. In the polydisperse case it is very hard to avoid seg
gation.

For gases and liquids, the thermal agitation of molecu
is a natural and efficient mechanism leading to thoroug
mixed systems with homogenous equilibrium steady sta
@12#. We propose here, a study of a system of agitated gr
in analogy with liquid or gas molecules at the microsco
scale.

Two major differences between granular materials a
fluids are:~1! the particle size compared to the mean-fre
path and~2! the inelastic properties and friction responsib
for energy dissipation during collisions. The question then
if these differences will alter the system’s natural tendency
mix by diffusion. In other words, is it possible to use diffu
sion to mix grains? In spite of the dissipative collisions, it
possible to keep a granular system agitated, for example
an air table or a vibrating bed. To simulate numerically su
constantly agitated granular systems, we add an external
dom force to the equations of motion~see Sec. II!. We then
analyze the grain diffusion and its dependence on the var
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parameters of the system such as grain size. We find tha
spite of the dissipative nature of the collisions, diffusion
still a good mixing mechanism just like in fluids.

In Sec. II we detail the algorithm and summarize the pr
cipal dynamic equations and parameters of our system.
verify our procedure with the study of a monodisperse s
tem in Sec. III and etablish relations that characterize
temporal evolution of an initially segregated system. T
bidisperse case is studied in Sec. IV. We show in particu
the evolution of a system with homogeneous agitation, a
also the effects of a gradient in this agitation. Our conc
sions and discussion are in Sec. V.

II. ALGORITHM AND REVIEW

We use an event driven molecular dynamics algorith
The simulated grains have the same characteristics~e.g., nor-
mal and tangential restitution coefficients! as measured ex
perimentally@13#. To thermalize the system, we add at reg
lar discrete time step intervals,dt, external random forces
that act on every particle. There are several choices one
make for this force. Our choice for the force at the discr
time t is the following:

Fi
t~ t !5m~Ah0

2/dt!z i~ t ! ~2.1!

with i 5x,y ~corresponding to the two directions!, z i is a
Gaussian noise characterized by^z i(t)z j (t8)&5d i , jd t ,t8,
andm is the particle mass.h0

2 is the control parameter, which
we use to increase or decrease the agitation. Experiment
on the air table@14#, plastic disks of radiusR move due to
the fluctuations of the air flux acting on their surfaces. The
fore, since their mass is proportional toR2, we expect the
acceleration to be independent ofR. That is why we have
chosen an external force proportional to the particle ma
Eq. ~2.1!. The continuous time equation of motion of a pa
ticle between two collisions becomes

dv i~ t !

dt
5Ah0

2z i~ t !, ~2.2!
©2000 The American Physical Society04-1



-

in

en
n
th

d

th
ce

d
g

o
st

tu
o
a
a

y
s-

w

ns
p

ys
e
t

are
o-

de-
e

y
ach
n

s.

he
ad-
s
he
pa-

rac-
ng
the
rop-

i-
g-
like
ar-
ach
e-
if-

tem
trib-
we
-
f
l

C. HENRIQUE, G. BATROUNI, AND D. BIDEAU PHYSICAL REVIEW E63 011304
where noŵ z i(t)z j (t8)&5d i , jd(t2t8) @z i(t) has dimensions
(time)21/2 in this case#. In this paperv i denotes the instan
taneous velocity in thei direction andv2 the mean-square
velocity. The system is two dimensional and is enclosed
square box whose walls are made of grains of radiusr w and
are infinitely massive. The particle-wall collisions are tak
to be elastic. Note that in these two-dimensional simulatio
the particles are represented as spheres interacting at
equators.

A. Macroscopic characteristics of the steady state

The above model leads to a steady state characterize
a constant mean-square velocity,v2(t→`) for all particles.
The energy loss during collisions is compensated for by
random force. For a monodisperse gas, the energy balan
easily calculated. The energy lossG per unit time in the
steady state is given by@15#

G}vmv2, ~2.3!

wherev is the frequency of collisions. On the other han
the average gain in energy due to the random force durindt
is easily obtained from Eq.~2.2!:

1
2 m@v2~ t1dt!2v2~ t !#5mh0

2dt, ~2.4!

which, for infinitesimaldt, can be written as

1

2
m

]v2

]t
52G1mh0

2 . ~2.5!

We can writev;Av2/ l where l is a characteristic length
depending only on the packing fraction and on the radius
the grains. With this assumption and the fact that in the
tionary limit ]v2(t→`)/]t50, Eq. ~2.5! gives

v2~`!}~ lh0
2!2/3. ~2.6!

This power law is independent of the coefficients of resti
tion and friction if dissipation is not too large. The results
the kinetic theory of inelastic gases can be applied, in p
ticular, the velocity distribution can be approximated by
Maxwellian. The parameterh0

2 allows us to change the
granular temperatureT sincev2}T. Therefore, in the stead
state,T is independent of the initial conditions. For polydi
perse gases the problem becomes more complicated as
be seen below.

B. Coefficient of diffusion

Since the mean-square velocity is constant, and co
quently the collision frequencies too, particles have a sim
diffusive behavior. The mean-square displacement,^@r (t
1t0)2r (t0)#2&, gives the coefficient of diffusion

^@r ~ t1t0!2r ~ t0!#2&54Dt, ~2.7!

wheret0 is large enough to ensure thermalization of the s
tem. Clearly, if the system is examined at a time scalt
<1/v we will not observe the true diffusive behavior. A
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short time,v i is not constant due to the action ofFi
t and so

the mean-square displacement is not yet linear witht. For t
@1/v we verify the linear dependence of the mean-squ
displacement on time, for all particles. The value of the c
efficient of diffusion D found from the simulation is thus
larger than the theoretical value predicted by a Langevin
scription due to the dynamics of the particle at short tim
@16,17#.

C. Simulation procedure

We study systems made of two species of grains,s andb.
The radius of the particles are, respectively,Rs andRb. The
system is a square box of lengthL and we use the boundar
conditions discussed above. The number of particles of e
species is calculated based on the desired packing fractioC
and the relative proportion ofs particlesxs :

5 C5
nspRs

21nbpRb
2

L2
,

xs5
nspRs

2

nspRs
21nbpRb

2
,

~2.8!

wherens andnb are, respectively, the number of particless
andb.

For all mixtures, we performed two types of simulation
In the first one, the two speciessandb are already mixed and
the initial position of each particle is chosen randomly in t
box by using a classical algorithm of random sequential
sorption~RSA! @18#. We are careful that this algorithm doe
not introduce segregation in the initial configuration. For t
second type of simulation, the two species are initially se
rated with thes particles on the right and theb particles on
the left. The system is prepared such that the packing f
tion is homogeneous in the whole system. In the followi
section we present our results in the simple case where
two species have the same mechanical and geometrical p
erties, i.e.,s andb grains are of the same type.

III. MONODISPERSE CASE

To test the validity of our algorithm we start with ident
cal grains, i.e.,Rs5Rb . In this case, we do not expect se
regation because the grains are identical, but we would
to verify that the thermal process is efficient and that p
ticles do not aggregate. In other words, after some time e
grain will have visited all regions of the box. Figure 1 pr
sents the temporal evolution of the system for the two d
ferent initial configurations specified above. In Fig. 1~a! the
system is already mixed and in Fig. 1~b! the particles are
initially separated. As one can see in this figure, the sys
does not collapse and the grains are homogeneously dis
uted in the box. To analyze the dynamics of the mixture
measure the quantityNs,b(t) defined as the number of colli
sions betweens andb grains per unit time. The evolution o
Ns,b(t) with time gives two important results. For the initia
configuration corresponding to Fig. 1~a!, the quantityNs,b(t)
fluctuates around a mean value,Ns,b(`), as seen in Fig. 2.
4-2
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This means that the system has reached a steady sta
which the mean-square velocity of the particles is cons
and equal tov2(`). Note that the system evolves ve
quickly into this steady state. We have checked that all
configurations at different timest, are statistically identica
and that the system remains homogeneous. There is no
dence of collapse or cluster formation. The second obse
tion is that for the initial configuration corresponding to Fi
1~b!, the quantityNs,b(t) increases and then stabilizes
large time at the valueNs,b(`) defined above. However, th
mean-square velocity of the grains,v2(t), reaches the
steady-state valuev2(`) much more quickly since the grain
are identical. The knowledge of the mean-square velocit
not sufficient to define the state of the system since it gi
no information about the spatial partition of the two speci
Ns,b(t) is therefore the only pertinent quantity to charact
ize the homogeneity of the system.

FIG. 1. Configurations at three different timest51, t550, and
t5199. ~a! For an initially mixed system and~b! for an initially
segregated system.

FIG. 2. Number of collisions per unit time between the tw
species as a function of time. The dashed~solid! line corresponds to
the case of Figs. 1~a! and 1~b!.
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A few more comments aboutNs,b(t) are in order. In the
system studied above, the packing fraction and the velo
distribution are spatially homogeneous and constant in t
~except at very short time!. As a consequence the quanti
Ns,b(t) depends only on the spatial repartition of the tw
types of grains. The evolution ofNs,b(t) allows us to define
a mixing time,tmix . We have already mentioned that th
velocity is the same for all particles and independent of
sition. This is also true for the local density. We conclu
that also the frequency of collisions is the same for all p
ticles and is space independent. In this monodisperse c
the dynamics are purely diffusive and can be characteri
by a coefficient of diffusionD, which is independent of hori-
zontal spatial positionx. Let us calldNs,b(x,t) the number of
collisions between the two species occuring at a posit
betweenx andx1dx at timet. Clearly,dNs,b(x,t) is directly
proportionnal tods(x,t) anddb(x,t), the densities ofs andb
grains at positionx. The densitiesds anddb do not depend
on the vertical position since the system is invariant alo
this direction. We will defined0 as the total density and can
thus, writed05ds(x,t)1db(x,t). d0 is of course indepen-
dent ofx because the system remains homogeneous. We
obtain an expression forNs,b(t):

Ns,b~ t !}E
0

L

db~x,t !@d02db~x,t !#dx. ~3.1!

The density of big particles at (x,t), db(x,t), is described by
Fick’s equation,

]db~x,t !

]t
5D

]2db~x,t !

]x2
, ~3.2!

with the following boundary conditions:

H db~x!5d0 for 0<x,L/2 and t50

db~x!50 for L/2<x<L and t50

db~x!5d0/2 for all x and t.`.

~3.3!

We assume the solution of Eq.~3.2! has the form

db~x,t !5 (
m50

`

@Bm sin~lmx!1Am cos~lmx!#

3exp~2lm
2 Dt !1

d0

2
, ~3.4!

where thelm are constants. Using the conditions Eq.~3.3!
gives

db~x,t !5 (
k50

`

ak cos~lkx!exp~2lk
2Dt !1

d0

2
~3.5!

with

ak5
2d0~21!2k

p~2k11!
, ~3.6!
4-3
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lk5
~2k11!p

L
.

Equation~3.1! then gives the final expression forNs,b(t),

Ns,b~ t !}
d0

2L

4 F12 (
k50

`
8

p2~2k11!2
exp~22lk

2Dt !G ,

~3.7!

lk
25

~2k11!2p2

L2
.

As a first approximation, we may keep only the first mo
and write

Ns,b~ t !.Ns,b~`!@12exp~2t/tmix!#,
~3.8!

tmix5
L2

2p2D
,

wheretmix can be taken as the typical time for mixing.
To check the validity of the theoretical expressions

Ns,b(t) and tmix established above, we have perform
simulations for different values ofxs andC. For a given set
of parameters, we have performed five simulations co
sponding to different initial positions and velocities of th
particles for the case where thes and b grains are initially
separated. Figure 3 showsNs,b(t) versust averaged over the
five simulations. We see that the agreement between th
and numerical simulation is very good. Figure 4 shows
dependence of the mixing timetmix , on the coefficient of
diffusion D. To get this, we performed several simulatio
changing the packing fraction and the radius of the partic
in order to vary the coefficient of diffusion. Note thatD was
estimated using Eq.~2.7!. The slope of the curve is exactl
that predicted by the theory. As the coefficientD can be
calculated from the parameters of the system (Rs5Rb , h0

2,

FIG. 3. Ns,b(`)2Ns,b(t) vs time. Solid line is the numerica
average over five simulations. The dashed line is given
Ns,b(`)exp(2t/tmix), tmix543.5.
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C), we can estimate analytically and with high accuracy
mixing time. We have also verified the dependence oftmix
on L2, Eq. ~3.8!, and have found very good agreement to

IV. BIDISPERSE CASE

We now discuss the case of a binary mixture. We will s
that the size difference between the grains changes dr
cally the dynamics of the system. The grainss and b are
taken of equal density and identical coefficients of restitut
and friction, and we takeRs,Rb .

We present first the case where the system is thermal
uniformly, i.e., Fi

t does not depend of the position of th
grain. Then we will examine the case where a gradien
imposed on the agitation force.

A. Case of homogeneous agitation

We will show that, in the bidisperse case, the system a
evolves into a homogeneous steady state. We will see
that the form of the thermalization force and the initial co
ditions determine the evolution of the system towards
steady state. In the simulations the packing fraction is fix
to 40% andxs , which represents the relative proportion
small grains@Eq. ~2.8!#, is the only parameter to be varied

1. Evolution at short time

Figure 5 shows the evolution of the system with timet. In
the initial configuration, the two species are separated
the two populations have the same initial velocity distrib
tion and thereforevs

25vb
2 . The initial local packing fraction,

as one can see in Fig. 5, is the same in the whole box.
Recall that in our simulations the surface occupied b

particle in the plane is proportional toR2 and its mass toR3

since the particles are spherical. Since the pressure iP
}mdv2, whered is the density of grains, the initial pressu
is larger for the bigger particles. The system therefore has

y FIG. 4. Dependence oftmix on D. s: Value from simulations.
Solid line: theoretical prediction.
4-4
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DIFFUSION AS A MIXING MECHANISM IN GRANULAR . . . PHYSICAL REVIEW E 63 011304
initial pressure difference that will govern its behavior im
mediately after the partition is removed whereby the big
particlesb, compress the small oness. As t increases,~see
Fig. 5! the density of theb particles decreases and so does
pressure. On the other hand, the density and pressure ofs
particles increase. During this compression period we
consider the system as two interacting monodisperse
tems. In the left part of the box~occupied by the large
particles!, as the density decreases, the mean-free-path,l in-
creases. We have seen in Sec. II A@see Eq.~2.6!# that v2

increases withl. The velocityvb
2 is then increasing with time

For the same reason, in the right part of the box,vs
2 is de-

creasing. As a consequence, the pressure, which is pro
tional to the product of the square velocity and the density
maintained almost constant in each subsystem. The pres
difference between the two subsystems remains therefore
portant and favors the compression of small particles. T
packing fraction of thes grains increases up to a valu
around 68%.

It is worth noting that if the walls were inelastic, collaps
would occur whereby the small grains would be squee
near the wall and would lose all their energy due to dissi
tion. In our simulations we use elastic wall and thus obse
a reflection of the compression wave. To illustrate this
show in Fig. 6 the packing fraction of thes grains as a
function of t and x. We observe a compression wave th
traverses the system. On average, the small particles re
compressed and the big ones dilute. During this process
diffusion between the big and the small particles is very
ficient due to the high-concentration gradient. The evolut
of the quantitiesvs

2(t) and vb
2(t) as a function of time is

FIG. 5. Evolution, at short time, of an initially segregated b
isperse system; From left to right:t51, t56, andt536. Rs50.4
andRb50.6, the total packing fraction is 40%.xs50.5.

FIG. 6. The local packing fraction of the small particles as
function of x ~the lateral position! and t.
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illustrated in Fig. 7. One can see that the velocity of sm
particles decreases at short time and then increases whe
mixing process starts. At long time the mean-square velo
ties of both species reach a constant value corresponding
steady state.

2. Mixing time

After the compression phase, the system starts to mix.
we have done for the monodiperse case we examine
quantityNs,b(t). To have a good estimate ofNs,b(t), we take
~as in the previous section! the mean value obtained over fiv

FIG. 7. vs
2(t) and vb

2(t) as functions of time, for an initially
segregated system.

FIG. 8. Ns,b(t) vs t for a bidisperse gas.Rs50.4, Rb50.6, and
xs50.625. tmix.30 is obtained by fitting Eq.~3.8!, shown as a
dashed line.
4-5
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simulations. Figure 8 shows that we can appoximateNs,b by
N(`)exp(2t/tmix). Note that the compression phase occ
during a short time compared totmix . We obtain in this way
tmix for different values ofxs for Rs50.4 andRb50.6. It
appears that this timetmix can be considered as independe
of xs ~see Fig. 9!. This mixing time obtained in a bidispers
system is smaller than that obtained for the same pac
fraction in the monodisperse case.

3. Steady state

Even though the collisions are dissipative, the syst
does reach an out of equilibrium stationary state due to

FIG. 9. tmix for the bidisperse case as a function ofxs . Rs

50.4, Rb50.6, andC50.4. tmix is constant.

FIG. 10. The mean-square velocities reached in the statio
state as a function ofxs . vs

2 (h) andvb
2 (s) obtained from simu-

lations. Dashed lines are obtained from Eq.~4.1! assuming constan
P(mi ,mj )’s. Solid lines are the results from Eqs.~4.1! and ~4.3!.
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random agitation force. This stationary state should be ch
acterized by macroscopic functions that should be indep
dent of time.

Using thermalized configurations~long evolution times!,
we performed a geometrical analysis using Voronoi tesse
tion to check that no segregation exists. We calculated
number ofs neighbors for ab particle and found that the
distributions of neighbors are roughly identical to the dist
butions obtained from static configurations generated by
RSA algorithm. We should point out that the distances
tween particles can be different from the static case but
neighborhood of a grain is the same in the dynamic and st
situations. This demonstrates that there is no segregatio

We now consider the distribution of the kinetic energy
a function of the radius of grains. In the case of elastic c
lisions, we can define a kinetic temperatureT even in a poly-
disperse case. In a forced inelastic system the repartitio

ry

FIG. 11. ~a! The total kinetic energy of the system as a functi
of xs for Rs50.4, Rb50.6, C50.4, andh0

2522.0. ~b! vs
2/vb

2 as a
function of xs for the same parameters.
4-6
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energy seems to be very different and depends on the typ
forcing used@19,20#.

In our system, the mean-square velocityv i
2 of particle i

depends on its massmi and also on the proportion of a
speciesj and their massesmj . In all casesv i

2 is constant at
large time. Energy balance in a bidisperse system means
the agitation energy per unit time for a given species equ
the energy lost in collisions with particles from all specie
This can be written as follows:

H P~ms ,ms!wssmsvs
21P~ms ,mb!wsbmsvs

25msh0
2 ,

P~mb ,mb!wbbmbvb
21P~mb ,ms!wbsmbvb

25mbh0
2 ,

~4.1!

whereP(mi ,mj ) is the mean relative loss of kinetic energ
by particlei when particlesi and j collide. Clearly, this term
depends both on mass and relative velocity. We also ex
that P(ms ,ms) should be equal toP(mb ,mb). Therefore the
quantitiesP(ms ,ms) and P(mb ,mb) calculated in a bidis-
perse system must be the same as those obtained fo
monodisperse case. This termP(mi ,mi) is therefore only a
function of coefficients of restitution and friction. The ter
wi j represents the frequency of collisions of the grainsi with

FIG. 12. Values ofP(ms ,mb) and P(mb ,ms) vs xs calculated
using Eqs.~4.3! and ~4.1! for the same mixtures as in Fig. 11
Dashed line:P(mb ,ms). Full line: P(ms ,mb).
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j grains. We note thatnswsb5nbwbs . Using Enskog theory
@21#, the frequencies of collisions of the grains in our tw
dimensional system are given by

¦

wss5xAp~2Rs!
Cxs

pRs
2
A2vs

2

wsb5xAp~Rs1Rb!
C~12xs!

pRb
2

Avs
21vb

2

wbb5xAp~2Rb!
C~12xs!

pRb
2

A2vb
2

wbs5xAp~Rs1Rb!
Cxs

pRs
2
Avs

21vb
2.

~4.2!

x is a correction factor and corresponds to the local rad
distribution around a particle@22,23#. We have previously
shown in Ref.@24# that x does not depend on the type o
particles but only on the packing fraction.

The two limit cases,xs50 and xs51, correspond to
monodisperse situations withR5Rs and R5Rb, respec-
tively. In these two cases, we have determined numeric
the four parametersvs

2(xs50), vs
2(xs51), vb

2(xs50), and
vb

2(xs51) by simulating a particle of radiusRi in a sea of
particles of radiusRj . Using Eq.~4.1!, we can calculate for
these limiting values ofxs the four parametersP(mi ,mj ).
We have verified thatP(mi ,mi) is independent of the type
of particle. We have found thatP(ms ,ms)5P(mb ,mb)
50.145, P(mb ,ms)50.229 ~at xs51), and P(ms ,mb)
50.066~at xs50).

To a first approximation, we consider theP(mi ,mj ) to be
independent of the relative velocity. We compare in Fig.
the values ofvs

2 and vb
2 obtained from the numerical simu

lations and those deduced from Eq.~4.1!. These values were
calculated for differentxs at a packing fraction of 40%. The
dashed lines correspond to the theoretical values and
symbols to the simulations. The agreement between sim
tions and theory is quite good, in particular for the big pa
ticles.

However, the energy lost in a collision does depend
the relative velocity, and therefore onvs

2 and vb
2 . To treat

this correctly in Eq.~4.1!, we show in Fig. 11 that both, the
kinetic energy of the system andvs

2/vb
2 , decrease linearly

with xs . Recalling thatxs lies in the interval@0,1#, we can
thus write
5
Cxs

pRs
2

msvs
2~xs!1

C~12xs!

pRb
2

mbvb
2~xs!5

C

pRb
2

mbvb
2~xs50!1F C

pRs
2

msvs
2~xs51!2

C

pRb
2

mbvb
2~xs50!Gxs

vs
2~xs!

vb
2~xs!

5
vs

2~xs50!

vb
2~xs50!

1F vs
2~xs51!

vb
2~xs51!

2
vs

2~xs50!

vb
2~xs50!

Gxs .

~4.3!
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Using the four equations~4.3! and ~4.1!, we can calculate
directly vs

2 , vb
2 , P(ms ,mb), andP(mb ,ms) as a function of

xs . Note that different values ofxs correspond to differen
values of the ratiovs

2/vb
2 . The solid lines in Fig. 10 corre

spond to the theoretical velocities squared calculated w
this approach. The agreement with simulations is now v
good. The values ofP(ms ,mb) andP(mb ,ms) from the so-
lution of our four equations are shown in Fig. 12. The valu
of P(ms ,mb) for xs near 1 andP(mb ,ms) for xs near 0
should be taken with precaution, because their weight in
balance of energy@Eq. ~4.1!# is negligable forxs.1 andxs
.0. Indeed the energy loss in these limit cases correspo
to rare collisions.

Note that the approximation ofP(mb ,ms) by a constant
~as done in the first approach! is fairly good. However, the
value of P(ms ,mb) varies significantly withxs . This ex-
plains the slight difference between simulation and theory
the first approach. Finally we see that at largexs ~corre-
sponding to small ratiovs

2/vb
2) the small particles gain en

ergy in collisions with big particles. This phenomenon o
curs only in dissipative forced gases, wherev2 is no longer
proportional to 1/m.

B. Nonuniform agitation

We will now treat the case of nonuniform agitation. To d
this we use exactly the same algorithm but introduce a g
dient in the agitation by imposing the following spatial d
pendence forh0

2:

h0
2~x!5a1bx, ~4.4!

wherea andb are constants. The initial configuration of th
system is taken to be the stationary state found in the cas

FIG. 13. Typical configuration obtained in the presence o
gradient in the granular temperature.Rs50.4, Rb50.6, xs50.5, a
54, andb50.9. C50.3.
01130
th
y

s

e

ds

n

-

a-

of

homogeneous agitation. The gradient of the agitation is c
sen such that the mean value ofh0

2(x) over the whole system
corresponds to the agitation of the initial state. The simu
tions show that a concentration gradient appears in the
tem. The system reaches a nonuniform steady state wher
density gradient remains present in the course of time. N
however, that if we follow the motion of a particle, we fin
that it does visit the whole system. All the previous relatio
and equations are still valid in this case but one should c
sider a local ‘‘equilibrium.’’ Figure 13 represents a typic
configuration obtained at large time. The hot agitation is
the right side of the system. In the stationary state, the g
dient of concentration balances the gradient of agitation s
that the pressure is homogeneous throughout the system

The other main observation is that segregation appear
the system. The local proportion ofs and b grains is no
longer the initial one. The big particles are more sensitive
the gradient of agitation than the small ones. We show
Fig. 14 the local packing fraction for both species as a fu
tion of the positionx in the system. We have found in a
cases we have investigated so far that the stationary s
always exhibits segregation. Our numerical results on se
gation ~the big particles are more concentrated in the col
region! is in complete agreement with the theoretical calc
lations based on the granular kinetic theory@25#.

V. CONCLUSION

The main purpose of this paper is to investigate granu
mixtures numerically. We used an algorithm that keeps
dissipative particles agitated by applying to the grains
external random acceleration independent of their mass
the case where the external acceleration is independent o
position of the particles~homogeneous agitation! we have
shown that the system reaches a well mixed homogene
stationary state even in the bidisperse case. We have th

a

FIG. 14. Local packing fraction as a function ofx for s (h) and
b (s) grains. The mixture corresponds to Fig. 13. Averaged o
the whole system,xs50.5 andC50.3.
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fore shown that agitation, and therefore diffusion, is an e
cient mechanism for mixing. We have established a theo
ical expression between the typical time of mixing,tmix , and
the numberNs,b of collisions betweens andb grains per unit
of time, which is valid for monodisperse as well as bid
perse systems. For the monodiperse case we have give
exact expression oftmix as a function of the diffusion coef
ficient. For the bisperse case we have found thattmix de-
pends strongly on the initial configuration of the system. W
have characterized the steady state reached by bidispers
semblies and in particular we have established energetic
lations that allow us to evaluate the square velocities of
grains as a functionxs ~the relative proportion of both spe
cies!.

In addition we have investigated the case where there
gradient of agitation through the system and have shown
p

e

-

e

01130
-
t-

-
the

e
as-
e-
e

a
at

segregation appears. The main cause of this segregatio
not related directly to the nature of the grains~size, dissipa-
tion, roughness! but originates from the presence of a tem
perature gradient. In a lot of mixing experiments~rotating
drum, vibrated system! there often exists a gradient of agita
tion which then leads to a segregation process. Of cou
there are other types of segregation mechanisms that
sometimes more efficient, but this one is in some sense
trinsic.
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