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Diffusion as a mixing mechanism in granular materials
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We present several numerical results on granular mixtures. In particular, we examine the efficiency of
diffusion as a mixing mechanism in these systems. The collisions are inelastic and to compensate the energy
loss, we thermalize the grains by adding a random force. Starting with a segregated system, we show that
uniform agitation(heating leads to a uniform mixture of grains of different sizes. We define a characteristic
mixing time 7,ix, and study theoretically and numerically its dependence on other parameters like the density.
We examine a model for bidisperse systems for which we can calculate some physical quantities. We also
examine the effect of a temperature gradient and demonstrate the appearance of an expected segregation.
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[. INTRODUCTION parameters of the system such as grain size. We find that in
spite of the dissipative nature of the collisions, diffusion is
Granular media are notoriously difficult to mix. For a va- still a good mixing mechanism just like in fluids.

riety of reasons and under rather general conditions, they In Sec. Il we detail the algorithm and summarize the prin-
tend to form segregated steady stdtbls For example, seg- cipal dynamic equations and parameters of our system. We
regation can occur during granular flow, the bigger particles/erify our procedure with the study of a monodisperse sys-
moving farther than the smaller ones. Difference of Sizetem in Sec. Il and etab"sh I‘elations that CharaCterize the
(polydispersity of the grainsor difference of materia(dif-  temporal evolution of an initially segregated system. The
ferent kinds of grainb produce different geometrica| or bidisperse case is studied in Sec. IV. We show in particular
physical properties. Segregation can also be due to percolfe evolution of a system with homogeneous agitation, and
tion [2] where the small grains fall through the holes be-also the effects of a gradient in this agitation. Our conclu-
tween the big grains leaving only the bigger particles behindsions and discussion are in Sec. V.
Shear{3-5] and vibration can also produce segregation. One
of the best known examples of vibration segregation is per- Il. ALGORITHM AND REVIEW
haps the “Brazil nut effect.” In this case, the geometrical
propertied 6—8] are responsible for the upward movement of We use an event driven molecular dynamics algorithm.
big particles although convection processes near the boundhe simulated grains have the same characterigigs, nor-
aries can also be very importaf@]. All these processes Mmal and tangential restitution coefficientss measured ex-
(flow, shearing, and convectipare very common in indus- Perimentally[13]. To thermalize the system, we add at regu-
trial applications such as in mixef$0,11]. For these reasons lar discrete time step intervalsit, external random forces

such mixers are efficient only for rather homogeneous matethat act on every particle. There are several choices one can
rials. In the polydisperse case it is very hard to avoid segremake for this force. Our choice for the force at the discrete

gation. time t is the following:
For gases and liquids, the thermal agitation of molecules
is a natural and efficient mechanism leading to thoroughly Fi(t)=m(\/73/dt) £i(t) 2.9

mixed systems with homogenous equilibrium steady states
[12]. We propose here, a study of a system of agitated grain&,ith i—
in analogy with liquid or gas molecules at the microscopic

scale. qandm is the particle mass;rg is the control parameter, which

Two major differences between granular materials an we use to increase or decrease the agitation. Experimentally
fluids are:(1) the particle size compared to the mean-free—on the air tablg14], plastic disks of radiu® move due to

path and(2) the inelastic properties and friction reSponSIbIethe fluctuations of the air flux acting on their surfaces. There-

for energy dissipation during collisions. The question then ijore since their mass is proportional RZ. we expect the
if these differences will alter the system’s natural tendency t ' : . prop ! P
acceleration to be independent &f That is why we have

mix by diffusion. In other words, is it possible to use diffu- h ¢ r tional to th ticl

sion to mix grains? In spite of the dissipative collisions, it is € osgnl a_l?_hex ern? orcet_propor '0?.6‘ Of € tpar |cfe mass,
possible to keep a granular system agitated, for example O’Egé(bé'g\;veer? t?/i/)g IcT)lljl(i)sL:Snlsmbeesgr?w?eéon of motion ot a par-
an air table or a vibrating bed. To simulate numerically such
constantly agitated granular systems, we add an external ran-

dom force to the equations of motideee Sec. )l We then doi(t) \/?g»(t) 2.2
0Si ’ .

X,y (corresponding to the two directions/; is a
Gaussian noise characterized BY;(t){(t"))=3;;d;.t’,

analyze the grain diffusion and its dependence on the various dt
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where now({;(t);(t"))= & ;8(t—t’) [£(t) has dimensions  short time,v; is not constant due to the action Bf and so
(time)~ 2 in this casé In this papemw; denotes the instan- the mean-square displacement is not yet linear wifor t
taneous velocity in the direction andv? the mean-square > 1/w we verify the linear dependence of the mean-square
velocity. The system is two dimensional and is enclosed in alisplacement on time, for all particles. The value of the co-
square box whose walls are made of grains of radjpyand  efficient of diffusion D found from the simulation is thus
are infinitely massive. The particle-wall collisions are takenlarger than the theoretical value predicted by a Langevin de-
to be elastic. Note that in these two-dimensional simulationsscription due to the dynamics of the particle at short time
the particles are represented as spheres interacting at théir6,17).

equators.

C. Simulation procedure

A. M ic characteristics of the steady stat . .
acroscopic charactenistics of the steady state We study systems made of two species of grasrandb.

The above model leads to a steady state characterized Iihe radius of the particles are, respectivéty,andR,,. The
a constant mean-square velocity(t—) for all particles. system is a square box of lengthand we use the boundary
The energy loss during collisions is compensated for by theonditions discussed above. The number of particles of each
random force. For a monodisperse gas, the energy balancedpecies is calculated based on the desired packing fraCtion
easily calculated. The energy lo$s per unit time in the and the relative proportion of particlesx:
steady state is given Hy5]
ngmRZ+ n, R

Iocomo?, (2.3 C=——-——,
L2
where w is the frequency of collisions. On the other hand, n.mR2 (2.9
the average gain in energy due to the random force duting Xo= sTRs
is easily obtained from Eq2.2): ° ngmR2+ nymRE
sm{v?(t+dt) —v2(t) ]=myjdt, (2.4 whereng andn, are, respectively, the number of partickes
] o ) andb.
which, for infinitesimaldt, can be written as For all mixtures, we performed two types of simulations.
1 o2 In the first one, the two specieandb are already mixed and
A mn? (2.5  theinitial position of each particle is chosen randomly in the
2t ' '

box by using a classical algorithm of random sequential ad-
_ ) o sorption(RSA) [18]. We are careful that this algorithm does

We can writew~ Ju?/l wherel is a characteristic length not introduce segregation in the initial configuration. For the
depending only on the packing fraction and on the radius ofecond type of simulation, the two species are initially sepa-

tionary limit Jv?(t—)/gt=0, Eq.(2.5) gives the left. The system is prepared such that the packing frac-
tion is homogeneous in the whole system. In the following
v¥()o (1 75)%3 (2.6) i i i
7o) ' section we present our results in the simple case where the

. o - .. two species have the same mechanical and geometrical prop-
This power law is independent of the coefficients of reSt'tu'erties, i.e.s andb grains are of the same type.

tion and friction if dissipation is not too large. The results of
the kinetic theory of inelastic gases can be applied, in par-
ticular, the velocity distribution can be approximated by a Ill. MONODISPERSE CASE

Maxwellian. The parameterg allows us to change the T test the validity of our algorithm we start with identi-
granular temperatur€ sincev?«T. Therefore, in the steady cal grains, i.e.R.=R,. In this case, we do not expect seg-
state,T is independent of the initial conditions. For polydis- regation because the grains are identical, but we would like
perse gases the problem becomes more complicated as WY verify that the thermal process is efficient and that par-
be seen below. ticles do not aggregate. In other words, after some time each
grain will have visited all regions of the box. Figure 1 pre-
B. Coefficient of diffusion sents the temporal evolution of the system for the two dif-
Since the mean-square velocity is constant, and consderent initial configurations specified above. In Figa)lthe

quently the collision frequencies too, particles have a simpl@YStem is already mixed and in Fig(bl the particles are
diffusive behavior. The mean-square displaceméft(t initially separated. As one can see in this figure, the system
+10)— I (to) 1), gives the coefficient of diffusion does not collapse and the grains are homogeneously distrib-

uted in the box. To analyze the dynamics of the mixture we
([r(t+tg)—r(to)]?)=4Dt, (2.7  measure the quantitMg ,(t) defined as the number of colli-
sions betweeis andb grains per unit time. The evolution of
wheret, is large enough to ensure thermalization of the sysNg ,(t) with time gives two important results. For the initial
tem. Clearly, if the system is examined at a time sdale configuration corresponding to Fig(al, the quantityNg p(t)
<1/w we will not observe the true diffusive behavior. At fluctuates around a mean vald, (), as seen in Fig. 2.
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A few more comments abolN, ,(t) are in order. In the
system studied above, the packing fraction and the velocity
distribution are spatially homogeneous and constant in time
(except at very short time As a consequence the quantity
Nsp(t) depends only on the spatial repartition of the two
types of grains. The evolution & ,(t) allows us to define
a mixing time, 7,ix. We have already mentioned that the
velocity is the same for all particles and independent of po-
sition. This is also true for the local density. We conclude
that also the frequency of collisions is the same for all par-
ticles and is space independent. In this monodisperse case,
the dynamics are purely diffusive and can be characterized
by a coefficient of diffusiorD, which is independent of hori-
zontal spatial position. Let us calloNg h(x,t) the number of
collisions between the two species occuring at a position
betweernx andx+ dx at timet. Clearly, 6N ,(X,t) is directly
FIG. 1. Configurations at three different times 1, t=50, and proportionnal tad(x,t) anddy(x,t), the densities of andb

t=199. (a) For an initially mixed system anb) for an initially ~ 9rains at positiorx. The densitiesls andd,, do not depend
segregated system. on the vertical position since the system is invariant along

this direction. We will definel, as the total density and can,

This means that the system has reached a steady state tfiS, writedo=ds(x,t) +dy(x,t). do is of course indepen-
which the mean-square velocity of the particles is constanfi€nt ofx because the system remains homogeneous. We then
and equal tov?(»). Note that the system evolves very Obtain an expression fd¥ (t):

quickly into this steady state. We have checked that all the .

configurations at d|fferent.t|me’s are statistically |dept|cal . N b(t)“f dy(X,H)[do—dy(x,1)]dX. (3.1

and that the system remains homogeneous. There is no evi- ’ 0

dence of collapse or cluster formation. The second observa-

tion is that for the initial configuration corresponding to Fig. The density of big particles ak(t), dy(x,t), is described by
1(b), the quantityN(t) increases and then stabilizes at Fick's equation,

large time at the valudlg () defined above. However, the

mean-square velocity of the grains?2(t), reaches the adp(x,1) 8%dy(x,1)

steady-state valug?() much more quickly since the grains a D P (3.2

are identical. The knowledge of the mean-square velocity is

not.sufficierllt to define the sta}te of thg system since it givew?vith the following boundary conditions:

no information about the spatial partition of the two species.

Ngp(t) is therefore the only pertinent quantity to character- dy(x)=dy,  for 0=<x<L/2 andt=0

ize the homogeneity of the system.
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dp(x)=0 for L/2sx<L andt=0 (3.3

3000 , . . dy(X)=dp/2 forall x and t=oc.
N, We assume the solution of E€B.2) has the form
2000 db(x’t):mE:o [Bm SIN(ApX) + Ay COSA X) ]
5 X exp(—\2Dt) + %o 3.4
8 exp(—AEDY)+ o, (3.4
1000 | . .
where the\,, are constants. Using the conditions 8.3
gives
0 db(x,t):2 akcos(Akx)exp(—)\th)+? (3.5
. . . k=0
0 50 100 150 200
t with

FIG. 2. Number of collisions per unit time between the two Tk
species as a function of time. The daslkedlid) line corresponds to a= 2do(—1) (3.6)
the case of Figs. (&) and 1b). k m(2k+1) '’ ’
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FIG. 3. Ngp() —Ngp(t) vs time. Solid line is the numerical

average over five simulations. The dashed line is given by FIG. 4. Dependence of.,x on D. O: Value from simulations.

Ni,b(%) EXP(t/ T, Trmix=43.5. Solid line: theoretical prediction.
(2k+ 1) C), we can estimate analytically and with high accuracy the
k= L : mixing time. We have also verified the dependencergf;

onlL? Eq. (3.9, and have found very good agreement too.
Equation(3.1) then gives the final expression fbig ,(t),

dSL % 8 IV. BIDISPERSE CASE

Ns,p(t) = 4 1_k20 mexp(—m\ﬁm) ' We now discuss the case of a binary mixture. We will see

that the size difference between the grains changes drasti-

37 cally the dynamics of the system. The gram@nd b are
— _ taken of equal density and identical coefficients of restitution
L2 and friction, and we tak&® <Ry,
We present first the case where the system is thermalized

As a first approximation, we may keep only the first modeuniformly, i.e., F; does not depend of the position of the
and write grain. Then we will examine the case where a gradient is

imposed on the agitation force.

2
)\k

N () =Nsp()[1—exp(—t/7mi) ],

3.8 o
L2 A. Case of homogeneous agitation
Tmixzzsz ' We will show that, in the bidisperse case, the system also
evolves into a homogeneous steady state. We will see here
wherer,.;, can be taken as the typical time for mixing. that the form of the thermalization force and the initial con-

To check the validity of the theoretical expressions forditions determine the evolution of the system towards the
Nepo(t) and 7y established above, we have performedSteady state. In the simulations the packing fraction is fixed
simulations for different values of, andC. For a given set 0 40% andxs, which represents the relative proportion of
of parameters, we have performed five simulations correSMall graindEq. (2.8], is the only parameter to be varied.
sponding to different initial positions and velocities of the . ,
particles for the case where tlseand b grains are initially 1. Evolution at short time
separated. Figure 3 showg ,,(t) versust averaged over the Figure 5 shows the evolution of the system with timén
five simulations. We see that the agreement between theothe initial configuration, the two species are separated and
and numerical simulation is very good. Figure 4 shows théhe two populations have the same initial velocity distribu-
dependence of the mixing time,,;,, on the coefficient of tion and thereforergzvﬁ. The initial local packing fraction,
diffusion D. To get this, we performed several simulationsas one can see in Fig. 5, is the same in the whole box.
changing the packing fraction and the radius of the particles Recall that in our simulations the surface occupied by a
in order to vary the coefficient of diffusion. Note thatwas  particle in the plane is proportional ®’ and its mass t&®®
estimated using E(2.7). The slope of the curve is exactly since the particles are spherical. Since the pressur@ is
that predicted by the theory. As the coefficidbtcan be o«mdv?, whered is the density of grains, the initial pressure
calculated from the parameters of the systdRg<R,,, 7]3, is larger for the bigger particles. The system therefore has an
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0 50 100 150

FIG. 5. Evolution, at short time, of an initially segregated bid-
isperse system; From left to right=1, t=6, andt=36. R;=0.4
andR,=0.6, the total packing fraction is 40%,=0.5.

initial pressure difference that will govern its behavior im-
mediately after the partition is removed whereby the bigger
particlesb, compress the small ones As t increases(see

Fig. 5 the density of théo particles decreases and so does its «_2
pressure. On the other hand, the density and pressure sf the
particles increase. During this compression period we can
consider the system as two interacting monodisperse sys-
tems. In the left part of the boxoccupied by the larger
particleg, as the density decreases, the mean-free-path,
creases. We have seen in Sec. I[gee Eq.(2.6)] that v? t

increases with. The velocityvﬁ is then increasing with time. ) ) _ . o
For the same reason, in the right part of the bm§<,is de- FIG. 7. vg(t) andvy(t) as functions of time, for an initially
creasing. As a consequence, the pressure, which is proposr(—ag'regalteOI system.
tional to the product of the square velocity and the density, is o ,

maintained almost constant in each subsystem. The pressuféistrated in Fig. 7. One can see that the velocity of small
difference between the two subsystems remains therefore inparticles decreases at short time and then increases when the
portant and favors the compression of small particles. Th&ViXing process starts. At long time the mean-square veloci-
packing fraction of thes grains increases up to a value ties of both species reach a constant value corresponding to a

around 68% . steady state.
It is worth noting that if the walls were inelastic, collapse
would occur whereby the small grains would be squeezed 2. Mixing time

near the waII_ and \{vould lose all thei_r energy due to dissipa-  after the compression phase, the system starts to mix. As
tion. In our simulations we use elastic wall and thus observg,e have done for the monodiperse case we examine the
a reflection of the compression wave. To illustrate this WequantityN, ,(t). To have a good estimate M, ,(t), we take

show in Fig. 6 the packing fraction of the grains as & (55 in the previous sectibthe mean value obtained over five
function of t and x. We observe a compression wave that

traverses the system. On average, the small particles remain 3000
compressed and the big ones dilute. During this process the
diffusion between the big and the small particles is very ef- N, (=)
ficient due to the high-concentration gradient. The evolution

of the quantitiesv(t) and v3(t) as a function of time is

2000

N,,(t)

1000

o L L
0 50 100 150
t

FIG. 8. Ng,(t) vst for a bidisperse gas=0.4, R,=0.6, and
FIG. 6. The local packing fraction of the small particles as ax;=0.625. 7,,=30 is obtained by fitting Eq(3.8), shown as a
function of x (the lateral positionandt. dashed line.
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FIG. 9. m,x for the bidisperse case as a function>qf. Ry
=0.4, R,=0.6, andC=0.4. 7y iS constant.

simulations. Figure 8 shows that we can appoxinig by
N()exp(—t/7y,). Note that the compression phase occurs
during a short time compared tq,;,. We obtain in this way

Tmix for different values ofxg for R¢=0.4 andR,=0.6. It

appears that this time,,;, can be considered as independent , =

of X5 (see Fig. 9. This mixing time obtained in a bidisperse S.»
system is smaller than that obtained for the same packing *
fraction in the monodisperse case.
3. Steady state
Even though the collisions are dissipative, the system
does reach an out of equilibrium stationary state due to the
30 . . . )

25

21

1.8

1.7
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0.2

0.4

0.6
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)
0.2 0.4 0.6 0.8 1

xs

FIG. 11. (a) The total kinetic energy of the system as a function
of xs for Rg=0.4, Ry=0.6, C=0.4, and73=22.0. (b) v/vZ as a
function of xg for the same parameters.

random agitation force. This stationary state should be char-
acterized by macroscopic functions that should be indepen-
dent of time.

Using thermalized configurationgong evolution timeg
we performed a geometrical analysis using Voronoi tessella-
tion to check that no segregation exists. We calculated the
number ofs neighbors for ab particle and found that the
distributions of neighbors are roughly identical to the distri-
butions obtained from static configurations generated by an
RSA algorithm. We should point out that the distances be-
0 0.2 0.4 0.6 0.8 1 tween particles can be different from the static case but the
neighborhood of a grain is the same in the dynamic and static
situations. This demonstrates that there is no segregation.

FIG. 10. The mean-square velocities reached in the stationary W€ now consider the distribution of the kinetic energy as
state as a function of,. v2 ((J) andv? (O) obtained from simu- @ function of the radius of grains. In the case of elastic col-

lations. Dashed lines are obtained from E41) assuming constant lisions, we can define a kinetic temperatiireven in a poly-

P(m;,m;)’s. Solid lines are the results from Eqd.1) and(4.3). disperse case. In a forced inelastic system the repartition of

011304-6



DIFFUSION AS A MIXING MECHANISM IN GRANULAR . .. PHYSICAL REVIEW E 63 011304

0.6 . - . . j grains. We note that wg,=n,w,s. Using Enskog theory
[21], the frequencies of collisions of the grains in our two-
dimensional system are given by

E’“ Cx
2 Wss= x V(2R —— /2]
Lt WRS
a
o C(1—x)
& st:X\/;(Rs+Rb)TSVUs+Ub
o K
E S 4.2
5 —X
§ Wob= X VT(2Rp)———2v}
7R}
CXs 5
0.2 . ‘ . . Wbs:X\/;(Rs_" Rb)ﬁ\/vs—kvb.
~o 0.2 0.4 0.6 0.8 1 s
X x is a correction factor and corresponds to the local radial

distribution around a particlg22,23. We have previously
shown in Ref.[24] that y does not depend on the type of
particles but only on the packing fraction.

The two limit casesxs=0 and xs=1, correspond to
energy seems to be very different and depends on the type gionodisperse situations witR=Rs and R=R,;, respec-
forcing used 19,20, tively. In these two céases, we r;ave deternz’uned numerically

In our system, the mean-square veloaity of particlei thze four parameterss(x=0), vs(xs=1), vp(xs=0), and
depends on its mass; and also on the proportion of all Ub(Xs=1) by simulating a particle of radiug; in a sea of
specieg and their massesy; . In all cases)? is constant at Particles of radius}; . Using Eq.(4.1), we can calculate for
large time. Energy balance in a bidisperse system means thieS€ limiting values ok the four parameter®(m;,m;).
the agitation energy per unit time for a given species equal¥/e have verified thaP(m;,m;) is independent of the type
the energy lost in collisions with particles from all species.Of particle. We have found thaP(ms,ms)=P(m,,m)

This can be written as follows: =0.145, P(my,my)=0.229 (at xs=1), and P(ms,mp)
=0.066(at xs=0).
To a first approximation, we consider tR¢m; ,m;) to be
P(Mg, Mg)WsdMev 2+ P(Mg, Mp) WepMev 2= mg 72, independent of the relative velocity. We compare in Fig. 10
) ) ) the values o2 andv? obtained from the numerical simu-
P(mp ,Mp) WppMpv 5+ P(My , Ms) WpsMpv 5= My 775, lations and those deduced from E4.1). These values were
(4.2 calculated for differenkg at a packing fraction of 40%. The
dashed lines correspond to the theoretical values and the
whereP(m;,m;) is the mean relative loss of kinetic energy symbols to the simulations. The agreement between simula-
by particlei when particles andj collide. Clearly, this term tions and theory is quite good, in particular for the big par-
depends both on mass and relative velocity. We also expedcles.
that P(mg,mg) should be equal t&®(m,,m,). Therefore the However, the energy lost in a collision does depend on
quantitiesP(mg,mg) and P(m,,m,) calculated in a bidis- the relative velocity, and therefore af andv?. To treat
perse system must be the same as those obtained for thws correctly in Eq.(4.1), we show in Fig. 11 that both, the
monodisperse case. This teffm; ,m;) is therefore only a kinetic energy of the system and/v3, decrease linearly
function of coefficients of restitution and friction. The term with x;. Recalling thatxs lies in the interval[0,1], we can
w;; represents the frequency of collisions of the graiméth  thus write

FIG. 12. Values ofP(mg,m,) and P(m,,ms) vs x4 calculated
using Egs.(4.3) and (4.1) for the same mixtures as in Fig. 11.
Dashed lineP(m,,my). Full line: P(mg,m,).

vs(xs) Ug(xszo) Ug(xs: 1) _ Ug(xszo)

vE(Xs)  vE(Xs=0) |vh(%s=1) vh(xs=0)

Xs.
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FIG. 14. Local packing fraction as a functionxfor s (1) and
b (O) grains. The mixture corresponds to Fig. 13. Averaged over

FIG. 13. Typical configuration obtained in the presence of athe whole systenx;=0.5 andC=0.3.

gradient in the granular temperatuR,=0.4, R,=0.6, x,=0.5, a
=4, andb=0.9.C=0.3.

Using the four equation$4.3) and (4.1), we can calculate
directly v2, vZ, P(ms,my), andP(m,,m) as a function of
Xs. Note that different values ofs correspond to different

values of the ratiw?/v2. The solid lines in Fig. 10 corre-

homogeneous agitation. The gradient of the agitation is cho-
sen such that the mean valuemﬁ‘(x) over the whole system
corresponds to the agitation of the initial state. The simula-
tions show that a concentration gradient appears in the sys-
tem. The system reaches a nonuniform steady state where the
density gradient remains present in the course of time. Note,

spond to the theoretical velocities squared calculated wittowever, that if we follow the motion of a particle, we find
this approach. The agreement with simulations is now verghat it does visit the whole system. All the previous relations

good. The values oP(mg,m,) andP(m,,mg) from the so-

and equations are still valid in this case but one should con-

lution of our four equations are shown in Fig. 12. The valuessider a local “equilibrium.” Figure 13 represents a typical

of P(mg,m,) for x5 near 1 andP(m,,m) for x5 near O

configuration obtained at large time. The hot agitation is on

should be taken with precaution, because their weight in théhe right side of the system. In the stationary state, the gra-

balance of energjEq. (4.1)] is negligable forxs=1 andx,

dient of concentration balances the gradient of agitation such

=0. Indeed the energy loss in these limit cases correspondBat the pressure is homogeneous throughout the system.

to rare collisions.

Note that the approximation d?(my,m) by a constant
(as done in the first approacrs fairly good. However, the
value of P(mg,m,) varies significantly withxg. This ex-

The other main observation is that segregation appears in
the system. The local proportion &f and b grains is no
longer the initial one. The big particles are more sensitive to
the gradient of agitation than the small ones. We show in

plains the slight difference between simulation and theory irf-ig. 14 the local packing fraction for both species as a func-

the first approach. Finally we see that at large(corre-

sponding to small rati@?/v?) the small particles gain en-

tion of the positionx in the system. We have found in all
cases we have investigated so far that the stationary state

ergy in collisions with big particles. This phenomenon oc-always exhibits segregation. Our numerical results on segre-

curs only in dissipative forced gases, whereis no longer
proportional to .

B. Nonuniform agitation

gation (the big particles are more concentrated in the colder
region is in complete agreement with the theoretical calcu-
lations based on the granular kinetic the@2p].

V. CONCLUSION

We will now treat the case of nonuniform agitation. To do
this we use exactly the same algorithm but introduce a gra- The main purpose of this paper is to investigate granular
dient in the agitation by imposing the following spatial de- mixtures numerically. We used an algorithm that keeps the
pendence fomg: dissipative particles agitated by applying to the grains an
external random acceleration independent of their mass. In
the case where the external acceleration is independent of the
position of the particleshomogeneous agitatiprwe have
wherea andb are constants. The initial configuration of the shown that the system reaches a well mixed homogeneous
system is taken to be the stationary state found in the case sfationary state even in the bidisperse case. We have there-

(4.9

72(x)=a+bx,
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fore shown that agitation, and therefore diffusion, is an effi-segregation appears. The main cause of this segregation is
cient mechanism for mixing. We have established a theoretot related directly to the nature of the graiisize, dissipa-
ical expression between the typical time of mixing,,, and tion, roughnessbut originates from the presence of a tem-
the numbelN ,, of collisions betweers andb grains per unit  perature gradient. In a lot of mixing experimeritstating
of time, which is valid for monodisperse as well as bidis-drum, vibrated systejthere often exists a gradient of agita-
perse systems. For the monodiperse case we have given ttien which then leads to a segregation process. Of course
exact expression of i, as a function of the diffusion coef- there are other types of segregation mechanisms that are
ficient. For the bisperse case we have found that de- sometimes more efficient, but this one is in some sense in-
pends strongly on the initial configuration of the system. Wetrinsic.
have characterized the steady state reached by bidisperse as-
semblies and in particular we have established energetic re-
lations that allow us to evaluate the square velocities of the
grains as a functiox, (the relative proportion of both spe- This work was partially funded by the CNRS Program
cies. International de Cooperation Scientifigue PICS No. 753. C.
In addition we have investigated the case where there is H. thanks Alexandre Valance for his support during this
gradient of agitation through the system and have shown thatork and his help for the writing of this paper.

ACKNOWLEDGMENTS

[1] E. Guyon and J.-P. Troadec, Rroceedings of the Workshop [14] J. Lemaitre, A. Gervois, H. Peerhossaini, D. Bideau, and J.P.

Instabilities and Nonequilibrium Structuresdited by E. Ti- Troadec, J. Phys. 23, 1396(1990.
rapegui and W. ZelletKluwer, Dordrecht, 1996 [15] T.P.C. Van Noije, M.H. Ernst, and E. Trizac, Phys. Re\6®&

[2] L. Samson, Ph.D. thesis, Universile Rennes, 1997. 4326(1999.

[3] A.M. Scott and J. Bridgwater, Powder Techndl4, 177  [16] C. Henrique, G.G. Batrouni, and D. Bideau, Phys. RevtcE
(1976. be publishey

[4] C.S. Cambell, Annu. Rev. Fluid MecB2, 57 (1990. [17] C. Henrique, G.G. Batrouni, and D. Bideau, Granular Gases

[5] S.B. Savage and C.K.K. Lun, J. Fluid Med89, 311(1998. Worshop.

[6] G.H. Rosato, K.J. Strandburg, F. Prinz, and R.H Swendsenfls] J. Talbot and P. Schaaf, Phys. Rev4, 422 (1989.

- ;hy‘/]s.l.Revat'a\;tSSklOBS5119A97|)3. lovitch. Phvs. R L6 [19] I. Ippolito, C. Annic, J. Lemaitre, L. Oger, and D. Bideau,
[7] R. Julien, P. Meakin, and A. Pavlovitch, Phys. Rev. Lé8, Phys. Rev. 52, 2072(1995.

640 (1992. .
. . P . [20] Y. Limon Duparcmeur, H. Herrmann, and J.-P. Troadec, J.
8]J. D T M S. Lud E. Gle . -
[8] uran, azozi, uding, nt, and J. Rajchen Phys. 15, 1119(1995.

bach, Phys. Rev. B3, 1923(1996. . .
[9] J.B. Knight, H.M. Jaegger, and S. Nagel, Phys. Rev. [, [21] S. Chapman and T.G. Cowlinghe Mathematical Theory of

3728(1993 Non-uniform gasesCambridge University Press, Cambridge,
[10] P.M.C. Lacey, J. Appl. Chend, 257 (1954, England, 197D _
[11] L.T. Fan and Y.M. Chen, Powder Techn6l, 255(1999. 22 J.T. Jenkins and S.B. Savage, J. Fluid Mer$0, 187 (1983.
[12] E. Guyon and J.P. HulinGranites et Fumes un peu d'Ordre [23] L. Verlet and D. Levesque, Mol. ',Dhygﬁv 969 (1982.

dans le Méange (Odile Jacob, Paris, 1997 [24] C. Henrique, Ph.D. thesis, Universitie Rennes 1, 1999.
[13] M.Y. Louge, Phys. Fluid$, 2253 (1994. [25] B.O. Anarson and J.T. Willis, Phys. Fluid®, 1324(1998.

011304-9



